Reaction-Based Reactive
Transport Modeling of
Biological Iron(l111) Reduction

Bill Burgos

Department of Civil and Environmental Engineering
The Pennsylvania State University

Acknowledgements:

Eric Roden — The University of Alabama
George Yeh — University of Central Florida
Brian Dempsey — The Pennsylvania State University
Morgan Minyard — The Pennsylvania State University

{; PENNSTATE o
{5, ucr — o



Mathematical Models

Reaction-based models — simulate and
formulate the production-consumption rate of
every chemical species due to every chemical
reaction (both equilibrium and kinetic)

Ad hoc models - typically formulate only the
rate of the most significant reaction as an
empirical function fit to experimental data



Diagonalized Reaction-Based Models

Formal procedure - Gauss-Jordian elimination or QR
decomposition - to separate M equations (needed to
solve for M unknowns) into three subsets:

Mass Conservation Equations for Components

Mass Action Equations for Equilibrium Reactions
Kinetic-Variable Equations for Kinetic Reactions

Most Important! — in the absence of parallel kinetic

reactions, all kinetic reactions are independent of each
other for independent evaluation

Fang et al. 2003 Water Resources Res. 39:1083



Previous Demonstration/Validation

e Obtained rate
formulations/parameters
for kinetic reactions
Independently from
batch experiments

e With no modifications,
these rate equations
were able to simulate
parallel kinetic reactions
during hematite-with-
AQDS experiments

Electron

Donor — - AQDS Fe(ll)
X
Oxidized
Electron AH,DS - @
Donor Rl RZ

Electron

Donor ﬂ
DIRB
Oxidized
Electron Fe(ll)
Donor R3

Burgos et al. 2003 Geochim. Cosmochim. Acta 67:2735



Current Demonstration/Validation

Batch Kinetics - Effect of [Fe(l111)]

 Model and measure biological
iron(111) reduction in natural
sediments

e Obtain rate formulations/
parameters for kinetic reactions
iIndependently from batch
experiments

e With no modifications, use rate
eqguations to simulate biological
iron(111) reduction in
constructed column reactors
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Proposed Reaction Network for
Biological lIron(111) Reduction

AFeOOH + lactate + 7TH* - 4Fe?* + acetate + HCO, + 6H,0 R1

FeOOH(bulk) - =FeOOH(surf) R2
Fe?* + =FeOOH > =FeOO-Fe (D* + H* R3
HPIPES - PIPES- + H* R4

M = 10 species, N = 4 reactions
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Fe2* sorption modeled as Freundlich isotherm
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Constructed Column Experiments

e Eatontown hematite sand

e wet-packed columns with
108 cells/mL S. putrefaciens CN32

e 1-cm dia, 7.5-cm bed length

 fed 5 mM Na-lactate in AGW

» effluent samples collected daily
for 21 d, analyzed for Fe(ll) and
organic acids

e deconstructed columns analyzed
for 0.5 N HCI Fe(l1), and by

Mossbauer spectroscopy




Bioreduction of Iron-Rich Coastal Sand
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Bioreduction of Iron-Rich Coastal Sand
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Bioreduction of Iron-Rich Coastal Sand
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Hydrologic Effect on Biologic Activity
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Iron(111) Reduction at low flow rates

10 d hydrologic residence time
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Summary

e Biogenic flux increases as hydrologic
residence time decreases

e Reaction-based reactive transport
modeling can capture this effect

e Solid-phase Fe(l11) bioreduction can be
sustained at long residence times In
natural sediments

e Long-term coupled Fe(111)/U(VI)
bioreduction can be sustained in natural

sediments
PENNSTATE
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Future Directions

e Continuous refinement, improvement and
expansion of reaction-based models

e Provide evidence for uranium immobilization
INn long-term, long-residence time, initially
low DMRB-biomass FRC sediment columns

 Provide kinetic information on solid-phase
reactants and products
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